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connection, an increase in the value of the parameter e used in the calculations was limited 
to the maximum value of e,* = er -0.0005. The value of H, determined for it can be regarded as 
an approximation to the value ,Ho**. 

Fig.4 shows the lines of separation calculated for the combinations of initial parameters 
used in the table. In the series with the value p=O.Of, the extreme versions are shown by 
dashed lines, and in the case of p= 0.001, by the dot-dash lines. The curve for Ho =35,p = 
0.001 was not drawn, since it is very close to the line of separation at HI= 35,p=O.O1,L= 50. 
This is confirmed by comparing the versions in question with the tabulated values of H, and H,. 
The destabilization of saline waters of reduced density occurs when the rate of evaporation 
is reduced almost proportionally , and hence also the process of filtration within the border 
zone. In conformity with this, the maximum depth T of the free surface of the border zone is 
also reduced. The depression curves formally resemble each other in all the computed versions, 
and their positions within the ranges of the graph also differ little from each other. For 
this reason only one such curve is included in Fig.4 for the lens at L=5O,p=OO1. 

The relationship of a* described above is illustrated in Fig.5 for p=O.O1 by the upper 
line (L= 25) and lower line (L= 50). The dashed horizontal lines show the corresponding limit 
values of the parameter a=~. 

The authors thank N.S. Kolodei for help in carrying out the computations. 
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Translated by L.K. 

The problem of maximizing the critical load causing a loss of stability 
in an elastic inextensible circular ring under hydrostatic pressure is 
studied. An undeformed ring has the form of a circle of unit radius, and 
its thickness, and hence the flexural rigidity, varies along the arc. 
The thickness distribution must be determined from the condition of maximum 
critical load causing the loss of stability , under the condition that the 
mass of the ring remains constant. It is shown that of all circular rings 
of the same mass a ring of constant thickness can bear the greatest load 
before losing stability. 

1. Basic equations and formulation of the problem of,optimization. Let US 

consider the conditions for the loss of stability of a circular ring acted uponbyauniformly 
distributed, compressive hydrostatic load. We know that under the action of hydrostatic 
pressure the elementary load vectors remain normal to the curved axis of the ring, and the 
work done by this load is equal to the product of the pressure and the difference in the areas 
bounded by the ring in its deformed and undeformed state. Therefore, the external load is 
conservative, and the phenomenon of loss of stability can be studied using static methods. 
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we shall assume that one of the principal central axes of symmetry of transverse cross- 

section lies in the plane of curvature of the ring. When the compresssive load reaches its 
critical value .\, the initial circular form of the ring becomes unstable and a perturbed 

state of equilibrium appears. We shall assume that the bending occurs in the plane ot 
curvature of the ring. Then the dimensionless critical load will be equal totheminimumvalue 

of the Rayleigh ratio /l/ 

The minimum in (1.1) is found from the set of all 2n-periodic, twice differentiable 

functions II: such, that 

We note that,,' has the meaning of dimensionless normal deflection. We'denote by r = T (b) 

a dimensionless, 2;r-periodic function proportional to the area of transverse cross-section 

of the ring, such that 
<T; = 1, z (s) > II (i.,3, 

The first condition of (1.3) expresses the requirement that the mass of the ring must be 

constant. The quantity 7" is proportional to the flexural rigidity of the ring, and the 

exponent n takes the values of 1, 2 and 3. The cases n==l and IZ = 3 describe the situations 

in which the form of transverse cross-section undergoes an affine transformation such that 

one of the gometrical dimensions of the cross-section (the width or height of the cross- 

section respectively) changes, while n -mz 2 corresponds to a congruent change in the form of 

the cross-section /3/. 

The problem of optimization is formulated in the following manner. We require to find 

the distribution r(s) satisfying the condition (1.3) such, that the critical load causing 

the loss of stability has its maximum value 

We shall show that a ring of constant thickness is the optimal one, and that the following 
inequality holds: 

.\ *< .,' -= 3 , (1.5) 

where the equality is attained only when the ring is of constant thickness. The inequality 

(1.5) refers to isoperimetric inequalities related to the eigenvalues of the boundary value 

problems for ordinary differential equations. Some of the general methods of investigating 

isoperimetric inequalities are described in /3-5/. 

2. Transforming the variational formulation, and general properties of 
the boundary value problem. Before proving inequality (1.5), we shall mention some facts 

which are essential for further discussion. We note that .I is the smallest positive eigen- 

value of the selfconjugate boundary value problem with periodic boundary conditions 

y" $- y .(. i_c-"y z 0 y (0) = u (2x), y' (0) = y' (21) (2.1) 
We can confirm this by writing out the Euler equations for the functional (1.1) and 

putting y = P (w" -i- 11.) in them. 

We know (/6/, Ch.VI, Sect.3) that the eigenvalues of the boundary value problem (2.1) 

are simple or double, and that they can be arranged to form a non-decreasing sequence h,, A,,h,, 

h’ hi+,, (ki < h,+l) .1 1, so that the eigenfunction corresponding to the eigenvalue hi has, in 

the semi-interval 10,2x) L zeros if i is even, and if 1 zeros if i is odd. Further, h, 4 i., == 
AZ= 0. The eigenfunctions GOSS and sins correspond to doubly degenerate eigenvalue equal to 

zero. The third and fourth eigenvalue have a physical meaning, namely, the dimensionless 
critical load causing loss of stability A is equal to the third eigenvalue A=?.,, which may 

be double ‘1 = h, = h,. 

Let us denote by u (4 and v (4 the eiqenfunctions of the boundary value problem (2.1) 

corresponding to the eigenvalues X3 and La. These functions change their sign in the semi- 

interval ]0,2n), four times. We shall assume that they are orthonormed 

<IS-") = (z?'L) = 1, tuL_r-n> = 0 (2.2) 

The eigenvalues of the boundary value problem (2.1) can be regarded as extremal values 
of the following variational problem: 

(2.3) 

n (r) = (Y I y = c2 io, 24, y (4 = y + + zn) 

<y) = <y sin s) = (y COSS) =: 0, (r-9/) = *] 

"1 (T) =- (y I y Ez n (7). cyur-") = 0) 
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In particular, we have 

A, = min I [y] = min 
Uaul) Mnl(') 

I [y] = 2xtu,Q - u& = 2n(o,'= - V,') = 3 

!lg = ~z?os29, c0 = VFsisin 29 

3. Proof of the isoperimetric inequality. We shall show that the inequality b3< 

A, holds for any function r(s) such that conditions (1.3) hold and the equality is attained 

only for T(S)= 1. 

Indeed, since A, <A,* we have the following relation for any congruence functions u1 = 
n(@,srEDrn : 

(3.1) 

In particular, we can put 

u1 = C+ (ug co* 0 + v0 sin fl) (3.2) 
u, = C-'I' (-u0 sin 8 + u0 cos 8) 

2c = <r-n (U@Z_t Q)) > 0 

co9 28 CT-” (14~~ - v,q) + sin 28 (i-nU,UO) = 0 

Then the right-hand side of inequality (3.1) will be equal to 

The latter inequality follows from (1.3). Indeed, since ua2+ Q= 2, therefore <r-h (uo2+ 

t+?)> = 2<r-n). From the Holder inequality about the mean values (/7/, Theorem 211 where we put 

r= --n, ~=l) , we have 
<?-n)-l'n< (Z) = 1 

From this it follows that tr-")>i and the equality is attained only for the functions 
identically equal to unity. Thus the sequence of inequalities (3.1), (3.3) is established 

and the inequality (1.5) is thus proved. 

Note. A general method of establishing the sufficient conditions for the local optimum 

and simple eigenvalues is developed in /8/. It is easy to confirm that the sufficient con- 

ditions for the local optimum are satisfied in the present problem. 

Inequality (1.5) follows, in the case of n=i, from a more general inequality. In- 
equality (1.5) remains valid when 'r-" in the Rayleigh functional is replaced by an arbitrary 

concave function m(z) for which @('i)>cD(~), @((1)= i where ? denotes the mean value (/7/, 

Ch.6). The linear function is obviously concave: Q(T) = a(T). Indeed, the proof follows from 

the sequence of inequalities 
-- 

& = nun B [@ (VI > H lug @)I = H IU, (T)] > A 

The first inequality follows from the definition of concave functions, and the second 

inequality from the extremal property of the eigenvalues. The minimum is chosen from amongst 

all admissible functions. 
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